Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.07.21.23292994

ABSTRACT

Human infection challenge permits characterisation of the associated immune response in unparalleled depth, enabling evaluation of early pre-symptomatic immune changes and the dynamic immune factors important for viral clearance. Here, 34 healthy young adult volunteers, seronegative to SARS-CoV-2, were inoculated with a D614G-containing pre-Alpha SARS-CoV-2 strain. Nasal and systemic soluble mediator and antibody responses, and peripheral blood T cell and B cell responses were measured by MesoScale Discovery and flow cytometry just before and up to 1 year after intra-nasal inoculation. In the 18 (53%) participants who became infected, both nasal and systemic mediator responses were dominated by interferons (IFN) but with divergent kinetics. T cell activation and proliferation in blood peaked at day 10 in CD4+ T cells and day 14 in CD8+ T cells, returning to baseline by day 28. Following infection, antigen-specific T cells were largely CD38+Ki67+ and displayed central and effector memory phenotypes. T cells contracted after viral clearance with expanded antigen-specific memory T cell populations persisting past day 28. Both mucosal and systemic antibodies became detectable around day 10 but nasal antibodies plateaued after day 14 while circulating antibodies continued to rise. Using piecewise linear regression modelling, viral load related closely to the induction of type I IFN responses, moreover, CD8+ T cell responses and early IgA responses were strongly associated with viral clearance. Detailed analysis of innate and adaptive immune responses to primary SARS-CoV-2 infection following human challenge thus revealed the relationship between immune kinetics and viral load as factors associated with resolution of infection.


Subject(s)
COVID-19
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.06.01.23290819

ABSTRACT

Evaluation of host-response blood transcriptional signatures of viral infection have so far failed to test whether these biomarkers reflect different biological processes that may be leveraged for distinct translational applications. We addressed this question in the SARS-CoV-2 human challenge model. We found differential time profiles for interferon (IFN) stimulated blood transcriptional responses represented by measurement of single genes. MX1 transcripts correlated with a rapid and transient wave of type 1 IFN stimulated genes (ISG) across all cell types, which may precede PCR detection of replicative infection. Another ISG, IFI27, showed a delayed but sustained response restricted to myeloid peripheral blood mononuclear cells, attributable to gene and cell-specific epigenetic regulation. These findings were reproducible in diverse respiratory virus challenges, and in natural infection with SARS-CoV-2 or unselected respiratory viruses. The MX1 response achieved superior diagnostic accuracy in early infection, correlation with viral load and identification of virus culture positivity, with potential to stratify patients for time sensitive antiviral treatment. IFI27 achieved superior diagnostic accuracy across the time course of symptomatic infection. Compared to blood, measurement of these responses in nasal mucosal samples was less sensitive and did not discriminate between early and late phases of infection.


Subject(s)
Virus Diseases , Respiratory Tract Infections
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.04.13.23288227

ABSTRACT

The COVID-19 pandemic is an ongoing global health threat, yet our understanding of the cellular disease dynamics remains limited. In our unique COVID-19 human challenge study we used single cell genomics of nasopharyngeal swabs and blood to temporally resolve abortive, transient and sustained infections in 16 seronegative individuals challenged with preAlpha-SARS-CoV-2. Our analyses revealed rapid changes in cell type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific timepoints or infection status. We observed that the interferon response in blood precedes the nasopharynx, and that nasopharyngeal immune infiltration occurred early in transient but later in sustained infection, and thus correlated with preventing sustained infection. Ciliated cells showed an acute response phase, upregulated MHC class II while infected, and were most permissive for viral replication, whilst nasal T cells and macrophages were infected non-productively. We resolve 54 T cell states, including acutely activated T cells that clonally expanded while carrying convergent SARS-CoV-2 motifs. Our novel computational pipeline (Cell2TCR) identifies activated antigen-responding clonotype groups and motifs in any dataset. Together, we show that our detailed time series data (covid19cellatlas.org) can serve as a 'Rosetta stone' for the epithelial and immune cell responses, and reveals early dynamic responses associated with protection from infection.


Subject(s)
COVID-19 , Infections
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1121993.v1

ABSTRACT

To establish a novel SARS-CoV-2 human challenge model, 36 volunteers aged 18-29 years without evidence of previous infection or vaccination were inoculated with 10 TCID50 of a wild-type virus (SARS-CoV-2/human/GBR/484861/2020) intranasally. Two participants were excluded from per protocol analysis due to seroconversion between screening and inoculation. Eighteen (~53%) became infected, with viral load (VL) rising steeply and peaking at ~5 days post-inoculation. Virus was first detected in the throat but rose to significantly higher levels in the nose, peaking at ~8.87 log10 copies/ml (median, 95% CI [8.41,9.53). Viable virus was recoverable from the nose up to ~10 days post-inoculation, on average. There were no serious adverse events. Mild-to-moderate symptoms were reported by 16 (89%) infected individuals, beginning 2-4 days post-inoculation. Anosmia/dysosmia developed more gradually in 12 (67%) participants. No quantitative correlation was noted between VL and symptoms, with high VLs even in asymptomatic infection, followed by the development of serum spike-specific and neutralising antibodies. However, lateral flow results were strongly associated with viable virus and modelling showed that twice-weekly rapid tests could diagnose infection before 70-80% of viable virus had been generated. Thus, in this first SARS-CoV-2 human challenge study, no serious safety signals were detected and the detailed characteristics of early infection and their public health implications were shown. ClinicalTrials.gov identifier: NCT04865237.

6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.15.20248254

ABSTRACT

Introduction The Coronavirus (COVID-19) Pandemic has caused significant global mortality and impacted lives around the world. Virus Watch aims to provide evidence on which public health approaches are most likely to be effective in reducing transmission and impact of the virus, and will investigate community incidence, symptom profiles, and transmission of COVID-19 in relation to population movement and behaviours. Methods and analysis Virus Watch is a household community cohort study of acute respiratory infections in England & Wales and will run from June 2020 to August 2021. The study aims to recruit 50,000 people, including 12,500 from minority ethnic backgrounds, for an online survey cohort and monthly antibody testing using home finger prick kits. Nested within this larger study will be a sub-cohort of 10,000 individuals, including 3,000 people from minority ethnic backgrounds. This cohort of 10,000 people will have full blood serology taken between October 2020 and January 2021 and repeat serology between May 2021 and August 2021. Participants will also post self-administered nasal swabs for PCR assays of SARS-CoV-2 and will follow one of three different PCR testing schedules based upon symptoms. Ethics and dissemination This study has been approved by the Hampstead NHS Health Research Authority Ethics Committee. Ethics approval number – 20/HRA/2320. We are monitoring participant queries and using these to refine methodology where necessary, and are providing summaries and policy briefings of our preliminary findings to inform public health action by working through our partnerships with our study advisory group, Public Health England, NHS and Government Scientific Advisory panels. Strengths and limitations of this study Virus Watch is a large national household community cohort study of the occurrence and risk factors for COVID-19 infection that aims to recruit 50,000 people, including 12,500 from minority ethnic backgrounds. Virus Watch is designed to estimate incidence of PCR confirmed COVID-19 in those with respiratory and non-respiratory presentations and the incidence of hospitalisation among PCR confirmed COVID-19 cases. Virus Watch will measure effectiveness and impact of recommended COVID-19 control measures including testing, isolation, social distancing, respiratory and hand hygiene measures on risk of respiratory infection. Only households with a lead householder able to speak English were able to take part in the study up until March 2021. Only households of up to six people were eligible for inclusion and they were also required to have access to an internet connection. These restrictions will limit the generalisability to large or multigenerational households, and those without access to the internet.


Subject(s)
COVID-19 , Respiratory Tract Infections
SELECTION OF CITATIONS
SEARCH DETAIL